MAGNUM P.I.

ΒY

ALLAN BERELE

Department of Mathematics (C-012), University of California, San Diego, La Jolla, CA 92093, USA

ABSTRACT

In an earlier paper Berele and Regev associated to each p.i. algebra A a sequence of algebras $U^{k,l}(A)$ which proved useful in studying the identities of A. We now describe $U^{k,l}(A)$ as a universal object and describe how to recover A from the $U^{k,l}(A)$.

Throughout this paper F will be a field of characteristic zero and all algebras will be algebras over F.

In studying the cocharacters of p.i. algebras in [3] Berele and Regev introduced a construction $U^{k,l}$ which generalized the construction of universal p.i. algebras. If A is a p.i. algebra and $k, l \in \mathbb{N}$, we remind the reader of the construction of $U^{k,l}(A)$ which we now name the magnums of A. First, let $V = T \oplus U$ be a vector space with dim T = k and dim U = l. The free algebra $F\langle x_1, \ldots, x_k, y_1, \ldots, y_l \rangle$ is identified in a natural way with the tensor algebra of V, which is graded as $\Sigma \oplus W_n$, $W_n = (T \oplus U)^{\otimes n}$. As in [4], W_n is a module for FS_n under the *-action. FS_n is identified with the space of multilinear, homogeneous polynomials of degree n in x_1, \ldots, x_n in the usual way, and so defines $I_n(A)$ as the identities of A in FS_n. The subspace $\Sigma \oplus W_n * I_n(A)$ turns out to be an ideal in $F\langle x_1, \ldots, x_k, y_1, \ldots, y_l \rangle$ and $U^{k,l}(A)$ is, by definition, the quotient algebra.

This construction is somewhat indirect, and in this paper we describe $U^{k,l}(A)$ more directly as a certain universal object of A (Theorem 4). We also describe (Theorem 7) how to recover the identities of A from its magnum: we cannot hope to recover A, since the construction of $U^{k,l}$ depends only on the identities of A. As a corollary to Theorem 5, we prove a theorem, also due to Kemer, that for an arbitrary p.i. algebra A, A satisfies all identities of $\mathcal{M}_m(E)$, for large m.

Received November 15, 1983

§1. Graded identities

DEFINITIONS. Let $F\langle X, Y \rangle$ be the free Z/2Z-graded algebra generated by the set $X \cup Y$, in which elements of X have degree 0 and elements of Y have degree 1. If $A = A_0 \bigoplus A_1$ is any Z/2Z-graded algebra and $f(x_1, \ldots, x_k, y_1, \ldots, y_l) \in$ $F\langle X, Y \rangle$, we say that f is a graded identity for A if f vanishes under every degree zero homomorphism $F\langle X, Y \rangle \rightarrow A$, i.e., if $f(a_1, \ldots, a_k, b_1, \ldots, b_l) = 0$ for all $a_1, \ldots, a_k \in A_0, b_1, \ldots, b_l \in A_1$. For a fixed A, the set Q of graded identities for A in $F\langle X, Y \rangle$ is a graded T-ideal, in the sense that Q is invariant under all degree zero homomorphisms $F\langle X, Y \rangle \rightarrow F\langle X, Y \rangle$. Note that $\{f(x_1, \ldots, x_n) \in$ $Q \mid x_i \in X, i = 1, \ldots, n\}$ is precisely the set of (ungraded) polynomial identities for A_0 .

EXAMPLE. Let E be the infinite dimensional Grassman algebra generated by e_1, e_2, \ldots, E has a $\mathbb{Z}/2\mathbb{Z}$ -grading, $E = E_0 \bigoplus E_1$, gotten by setting $e_i \in E_1$ for all *i*. Then E satisfies the graded identities $[x_i, x_j] = [x_i, y_j] = y_i y_j + y_j y_i = 0$.

For the remainder of this paper A will be an ungraded p.i. algebra; $A \otimes E$ will be given the Z/2Z-grading induced from E, $(A \otimes E)_i = A \otimes E_i$, i = 0, 1; and we will be concerned with the graded identities for $A \otimes E$. Let $W = F\langle x_1, \ldots, x_k, y_1, \ldots, y_l \rangle$ be a free Z/2Z-graded algebra as above. W is N-graded by total degree $W = \sum_{n=0}^{\infty} \bigoplus W_n$. Each graded component W_n can be identified with $V^{\otimes n}$ as in [4], and so pl(k, l) acts on W_n as "superderivations."

LEMMA 1. Let Q = the graded identities of $A \otimes E$. Then $Q \cap W_n$ is a pl(k, l) submodule of W_n , i.e., if $M \in pl(k, l)$ then $\tilde{M}(Q) \subseteq Q$.

PROOF. By linearity it is enough to show that $Q \cap W_n$ is closed under the action of each elementary matrix E_{ij} in pl(k, l). So, first let M be a degree 0 matrix. For the sake of concreteness, say M is given by $M(x_1) = x_i$, and let $f(x_1, \ldots, x_k, y_1, \ldots, y_l) \in Q \cap W_n$. For every $\alpha \in F$,

$$f(x_1 + \alpha x_i, x_2, \ldots, x_k, y_1, \ldots, y_i) \in Q \cap W_n.$$

By a van der Monde argument the α coefficient of this polynomial will itself be a graded identity, and it equals $\tilde{M}(f)$. Next let M be a degree 1 elementary matrix, and for concreteness take $M(x_1) = y_i$. Now let $0 \neq \alpha \in E_1$, $\alpha^2 = 0$, and consider

$$g = f(x_1 + \alpha y_i, x_2, ..., x_k, y_1, ..., y_l)$$

= $f(x_1, x_2, ..., x_k, y_1, ..., y_l) + \alpha f_1(x_1, ..., x_k, y_1, ..., y_l).$

This f_1 vanishes under every graded substitution from $A \otimes E$, hence $f_1 \in Q$. But,

MAGNUM P.I.

since α commutes with each x_i and anticommutes with each y_i , $f_1 = \tilde{M}(f)$, and the lemma follows.

We now need to generalize 2.2–2.4 of [2] and describe how to linearize graded identities. As in [4] W_n is a bimodule for pl(k, l) and FS_n with the *-action, and we denote by B or B(k, l; n) the algebra of endomorphisms of W_n generated by pl(k, l). If $\omega \in W_n$ is any monomial in $\{x_1, \ldots, x_k, y_1, \ldots, y_l\}$, let

$$R^{+} = \{ \sigma \in S_{n} \mid \omega * \sigma = \omega \},$$
$$R^{-} = \{ \sigma \in S_{n} \mid \omega * \sigma = -\omega \},$$
$$R = R^{+} \cup R^{-} \quad \text{and}$$
$$s = s(\omega) = \sum_{\sigma \in R^{+}} \sigma - \sum_{\sigma \in R^{-}} \sigma \in FS_{n}$$

LEMMA 2. If $\omega = z_1 \cdots z_n \in W_n$ is a monomial and $s(\omega)$, B are as above, then $B\omega = W * s$.

PROOF. Clearly, $\omega * s = |R| \cdot \omega$, hence

$$B\omega = B\omega * s \subseteq W * s.$$

For the reverse inclusion, since W_n is completely reducible as a B module we decompose W_n over B as

$$W_n = (W_n * s) \bigoplus W^{(1)} = (B\omega) \bigoplus W^{(2)} \bigoplus W^{(1)}$$

Let $\pi: W_n \to W^{(2)}$ be the projection map. We need to show that $\pi = 0$. Since π is a *B*-map, the double centralizer theorem (4.15 in [4]) implies that there is an $a \in FS_n$ such that $\pi(v) = v * a$ for all $v \in W_n$. Write $a = \sum_{\sigma \in S_n} \alpha_{\sigma} \sigma$, let *T* be a transversal for *R* in S_n and let $J = \{i \mid z_i \text{ has degree } 1\}$, so that $\omega * \sigma = f_J(\sigma)\omega\sigma$ (permutation action) for all $\sigma \in S_n$. Now calculate

$$0 = \pi(\omega) = \omega * a = \sum_{\sigma \in S_n} \alpha_{\sigma} \omega * \sigma$$
$$= \sum_{\tau \in T} \sum_{\rho \in R} \alpha_{\rho\tau}(\omega * \rho) * \tau$$
$$= \sum_{\tau \in T} \sum_{\rho \in R} \alpha_{\rho\tau} f_J(\rho) \omega * \tau.$$

Since the $\{\omega * \tau\}$ are linearly independent,

$$\sum_{\rho\in R} \alpha_{\rho\tau} f_J(\rho) = 0 \quad \text{for each } \tau \in T.$$

Finally

$$\pi(v * s) = v * sa$$
$$= v * \sum_{\tau \in T} \sum_{\rho \in R} \alpha_{\rho\tau} s\rho\tau$$
$$= v * \sum_{\tau \in T} \left(\sum_{\rho \in R} \alpha_{\rho\tau} f_J(\rho) \right) s\tau = 0.$$

Hence $\pi = 0$, proving the lemma.

NOTATION. We make the usual identification $FS_n \equiv V_n$ = the space of (degree zero) multilinear, homogeneous degree *n* polynomials in x_1, \ldots, x_n .

COROLLARY 3. Let $\omega \in W_n$ be a monomial in $\{x_1, \ldots, x_k, y_1, \ldots, y_l\}$, $a \in V_n \equiv FS_n$ and $s = s(\omega)$ as above. Then $\omega * a$ is a graded identity for $A \otimes E$ if and only if sa is a polynomial identity for A.

PROOF. First, assume that $\omega * a \in Q$, the graded identities for $A \otimes E$. Lemma 2 implies that for some $b \in B(k, l; n)$ (increasing k if necessary) $b\omega = x_1 x_2 \cdots x_n * s$, hence, by Lemma 1, $x_1 \cdots x_n * sa \in Q$. But $x_1 \cdots x_n \in V_n$ and, in the identification of V_n with FS_n, $x_1 \cdots x_n$ corresponds to the identity, hence $sa \in Q \cap V_n$.

To prove the reverse inclusion, note that Lemma 2 implies that $B(x_1x_2\cdots x_n) = W$ (again, increasing k if necessary), hence $b(x_1\cdots x_n) = \omega$ for some $b \in B$. Now if $sa \in Q \cap V_n$, then as above $(x_1\cdots x_n) * sa \in Q$ so

$$\omega * a = \frac{1}{|R|} \omega * sa$$
$$= \frac{1}{|R|} b(x_1 \cdots x_n) * sa \in Q.$$

We now prove the main result of this section.

THEOREM 4. For any algebra A and $k, l \in \mathbb{N}$, the magnum $U^{k,l}(A) = F\langle x_1, \ldots, x_k, y_1, \ldots, y_l \rangle$ modulo the graded identities for $A \otimes E$.

PROOF. Let Q = graded identities of A and $I_n = Q \cap V_n$. Let $a \in I_n$, $\omega \in W_n$ a monomial and $s = s(\omega)$ as above. Then $sa \in I_n$ since I_n is a right ideal of FS_n and so $\omega * a \in Q$ by Lemma 3.

Conversely, let $v \in W$ be a graded identity for $A \otimes E$. By a van der Monde argument, we may assume that $v = \omega * a$ for ω a monomial, i.e., we may assume that v is homogeneous. Again taking $s = s(\omega)$, $\omega * s = |R| \omega$ and so

Vol. 51, 1985

$$\omega * a = \frac{1}{|R|} \omega * sa.$$

Finally, by Lemma 3, $sa \in I_n$ and therefore $\omega * a \in W_n * I_n$. So $\Sigma \bigoplus W_n * I_n = O \cap W$ and the theorem follows.

§2. Magnum

Theorem 4 describes the magnum of A in terms of A. In this section we construct from the magnum of A an algebra which satisfies the same identities as A. We need some preliminaries.

DEFINITION. H(k, l; n) denotes the set of partitions

$$\{\lambda = (\lambda_1, \lambda_2, \ldots) \in \operatorname{Par}(n) \mid \lambda_{k+1}, \lambda_{k+2}, \ldots \leq l\}.$$

The group ring FS_n decomposes into a direct sum of two sided ideals indexed by Par(n),

$$FS_n = \sum_{\lambda \in Par(n)} \bigoplus I_{\lambda}$$

and we break this up as

$$FS_n = \left(\sum_{\lambda \in H(k,l;n)} \bigoplus I_{\lambda}\right) \bigoplus \left(\sum_{\lambda \notin H((k,l;n)} \bigoplus I_{\lambda}\right) =_{DEF} C(k,l;n) \bigoplus D(k,l;n).$$

We will need

THEOREM 5 (Amitsur-Regev [1]). Let A be any p.i. algebra. Then there exists $k, l \in \mathbb{N}$ depending on A, such that for all n and all $a \in D(k, l; n)$, a is an identity for A.

Lemma 6 is analogous to the proof of theorem 14 in [3].

LEMMA 6. Let $\sum_{\sigma \in S_n} \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)}$ be an identity for $A, \omega_1, \ldots, \omega_n$ monomials in $F\langle x_1, \ldots, x_k, y_1, \ldots, y_l \rangle$ and $J = \{i \mid \omega_i \text{ has } (\mathbb{Z}/2\mathbb{Z}) \text{ degree } 1\}$. Then $\sum_{\sigma \in S_n} \alpha_{\sigma} f_J(\sigma) \omega_{\sigma(1)} \cdots \omega_{\sigma(n)}$ is a graded identity for $A \otimes E$.

PROOF. Let d = degree (in N) of the product $\omega_1 \cdots \omega_n$, and factor $x_1 \cdots x_d$ as $v_1 \cdots v_n$ so that deg $v_i = \text{deg } \omega_i$, $i = 1, \ldots, n$. Then $\sum \alpha_\sigma v_{\sigma(1)} \cdots v_{\sigma(n)}$ is an identity for A and it is easy to see that

$$\sum \alpha_{\sigma} f_{J}(\sigma) \omega_{\sigma(1)} \cdots \omega_{\sigma(n)} = (\omega_{1} \cdots \omega_{n}) * \sum \alpha_{\sigma} v_{\sigma(1)} \cdots v_{\sigma(n)} \in W_{d} * I_{d}(A).$$

By Theorem 4 this is a graded identity for $A \otimes E$.

A. BERELE

The Z/2Z-grading of W induces a Z/2Z-grading on the magnum $U^{k,l}(A)$. Hence $U^{k,l}(A) \otimes E$ may be regarded either as a Z/2Z × Z/2Z-graded algebra or as a Z/2Z-graded algebra.

THEOREM 7. (cf. [7] prop. 2) Let A be any p.i. algebra and let k, l be as in Theorem 5. Then A satisfies the same set of identities as

$$(U^{k,l}(A)\otimes E)_0=(U^{k,l}(A)_0\otimes E_0)\otimes (U^{k,l}(A)_1\otimes E_1).$$

PROOF. Denote $U = (U^{k,l}(A) \otimes E)_0$, I(A) = the identities of A and I(U) = the identities of U. To prove the theorem it is enough to prove that $I(U) \cap V_n = I(A) \cap V_n$ for all n.

First, let $g = \sum \alpha_{\sigma} x_{\sigma(1)} \cdots x_{\sigma(n)} \in I(A)$. By linearity of g, we need to prove that g vanishes under substitutions of the form $x_i \to \omega_i \otimes \varepsilon_i \in U$, $\omega_i \in U^{k,l}(A)$ is a monomial, $\varepsilon_i \in E$. Fix such a substitution and let

$$J = \{i \mid \omega_i \otimes \varepsilon_i \in U^{k,l}(A)_1 \otimes E_1\}.$$

Now calculate

$$g(\omega_1 \otimes \varepsilon_1, \ldots, \omega_n \otimes \varepsilon_n) = \sum \alpha_{\sigma} \omega_{\sigma(1)} \cdots \omega_{\sigma(n)} \otimes \varepsilon_{\sigma(1)} \cdots \varepsilon_{\sigma(n)}$$
$$= \sum (\alpha_{\sigma} f_J(\sigma) \omega_{\sigma(1)} \cdots \omega_{\sigma(n)}) \otimes \varepsilon_1 \cdots \varepsilon_n$$
$$= 0$$

by Lemma 6.

Conversely, let $g \in I(U) \cap V_n = I_n(U)$. Decompose V_n over FS_n as $V_n = I_n(A) \oplus K_n$ and assume by way of contradiction that $g \in K_n$. By [3], $W_n = W_n * I_n(A) \oplus W_n * K_n$. Moreover, by Theorem 5, $g \in C(k, l; n)$ and so by the Hook Theorem (3.18, [4]) $\omega * g \neq 0$ for some monomial $\omega \in W_n$. In particular $\omega * g \notin W_n * I_n(A)$.

On the other hand, for this particular $\omega = z_1 \cdots z_n$ choose $\varepsilon_1, \ldots, \varepsilon_n \in E$ such that $\varepsilon_1 \cdots \varepsilon_n \neq 0$ and each deg $\varepsilon_i = \deg z_i$ it the Z/2Z-grading. Then each $z_i \otimes \varepsilon_i \in U$ and so $g(z_1 \otimes \varepsilon_1, \ldots, z_n \otimes \varepsilon_n) = 0$. Write g as $\sum_{\sigma \in S_n} \alpha_\sigma x_{\sigma(1)} \cdots x_{\sigma(n)}$. If $J = \{i \mid \deg \varepsilon_i = 1\}$, then, as before,

$$\left(\sum \alpha_{\sigma} f_J(\sigma) z_{\sigma(1)} \cdots z_{\sigma(n)}\right) \otimes \varepsilon_1 \cdots \varepsilon_n = 0$$

and so $\sum \alpha_{\sigma} f_{I}(\sigma) z_{\sigma(1)} \cdots z_{\sigma(n)} = 0$ in $U^{k,l}(A)$. But this latter equals $\omega * g$, giving the contradiction $\omega * g \in W_{n} * I_{n}(A)$.

REMARK. $U^{k,l}(A)$ is a finitely generated algebra, and so Theorem 7 relates the identities of arbitrary p.i. algebras to identities of finitely generated algebras. As one corollary we get the following theorem of Kemer [5].

MAGNUM P.I.

COROLLARY 8. If A is any p.i. algebra, then for some m > 0, $I(A) \supseteq I(\mathcal{M}_m(E))$.

PROOF. By Theorem 7,

$$I(A) = I(U) \supseteq I(U^{k,l}(A) \otimes E).$$

 $U^{k,l}(A)$ is a finitely generated algebra, hence for large m, $I(U^{k,l}(A)) \supseteq I(\mathcal{M}_m(F))$ ([6]) and so $I(A) \supseteq I(\mathcal{M}_m(F) \otimes E) = I(\mathcal{M}_m(E))$.

References

1. S. A. Amitsur and A. Regev, P.I. algebras and their cocharacters, J. Algebra 78 (1982), 248-254.

2. A. Berele, Homogeneous polynomial identities, Isr. J. Math. 42 (1982), 258-273.

3. A. Berele and A. Regev, Applications of Hook Young diagrams to P.I. algebras, J. Algebra 83 (1983), 559-567.

4. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math., to appear.

5. A. R. Kemer, Decomposition of varieties, Alg. i Logika 20 (1980), 384-484.

6. A. R. Kemer, Capelli identities and nilpotency of the radial of finitely generated P.I.-algebra, Dokl. Akad. Nauk SSR 255 (1980), 793-797.

7. A. R. Kemer, Nonmatrix varieties, Alg. i Logika 19 (1980), 255-283.