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ABSTRACT 

In an earlier paper Berele and Regev associated to each p.i. algebra A a 
sequence of algebras Uk~(A ) which proved useful in studying the identities of 
A. We now describe U k'~ (A)  as a universal object and describe how to recover 
A from the Uk"(A). 

Throughout  this paper F will be a field of characteristic zero and all algebras 

will be algebras over F. 

In studying the cocharacters of p.i. algebras in [3] Berele and Regev 

introduced a construction U k~ which generalized the construction of universal 

p.i. algebras. If A is a p.i. algebra and k, l E N, we remind the reader of the 

construction of Uk't(A) which we now name the magnums of A. First, let 

V = T O U be a vector space with dim T = k and dim U = I. The free algebra 

F(x~ . . . . .  xk, y, . . . . .  y~) is identified in a natural way with the tensor algebra of V, 

which is graded as E @ Wn, W,-- (T @ U) ®". As in [4], IV, is a module for FS. 

under the *-action. FS, is identified with the space of multilinear, homogeneous 

polynomials of degree n in x~ . . . .  , x, in the usual way, and so defines I , (A)  as 

the identities of A in FS,. The subspace E O IV, * I, (A)  turns out to be an ideal 

in F(xl . . . . .  xk, yl . . . . .  y~) and Uk'~(A) is, by definition, the quotient algebra. 

This construction is somewhat indirect, and in this paper we describe U~'~(A) 
more directly as a certain universal object of A (Theorem 4). We also describe 

(Theorem 7) how to recover the identities of A from its magnum: we cannot 

hope to recover A, since the construction of U kt depends only on the identities 

of A. As a corollary to Theorem 5, we prove a theorem, also due to Kemer,  that 

for an arbitrary p.i. algebra A, A satisfies all identities of M,, (E),  for large m. 
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§1. Graded identities 

DEFINITIONS. Let F(X, Y) be the free Z/2Z-graded algebra generated by the 

set X U Y, in which elements of X have degree 0 and elements of Y have degree 

1. If A =AoOA~ is any Z/2Z-graded algebra and f(x~ . . . . .  xk, y , , . . . , y ~ ) E  

F(X, Y), we say that f is a graded identity for A if [ vanishes under every degree 

zero homomorphism F(X, Y)---> A, i.e., if / ( a , , . . . ,  ak, b, . . . . .  bt) = 0 for all 

a~ . . . . .  ak E Ao, bl . . . . .  b~ E A,. For a fixed A, the set Q of graded identities for 

A in F(X, Y) is a graded T-ideal, in the sense that Q is invariant under all 

degree zero homomorphisms F(X, Y)--->F(X, Y). Note that {f(Xl . . . . .  X . ) ~  

0 ] x~ E X, i = 1 . . . . .  n} is precisely the set of (ungraded) polynomial identities 

for A,,. 

EXAMPLE. Let E be the infinite dimensional Grassman algebra generated by 

el, e2 . . . . .  E has a Z/2Z-grading, E = E o O  E~, gotten by setting e~ E El for all i. 

Then E satisties the graded identities [x, xj] = [x, Yi] = Y~YJ + YJY~ = 0. 

For the remainder of this paper A will be an ungraded p.i. algebra; A @ E 

will be given the Z/2Z-grading induced from E, (A @ E)~ = A @ Ei, i = 0, 1; and 

we will be concerned with the graded identities for A @E.  Let W =  

F(x, . . . . .  xk, y~ . . . . .  yt) be a free Z/2Z-graded algebra as above. W is N-graded 

by total degree W = E:=o ~) W,. Each graded component IV, can be identified 

with V ®" as in [4], and so pl(k, l) acts on W, as "superderivations." 

LEMMA 1. Let Q = the graded identities of A ® E. Then Q N W, is a pl(k, 1) 

submodule of W,, i.e., i[ M E pl(k, l) then IVI(Q) c_ Q. 

PROOF. By linearity it is enough to show that Q N IV, is closed under the 

action of each elementary matrix E~j in pl(k, t). So, first let M be a degree 0 

matrix. For the sake of concreteness, say M is given by M(x~)= x, and let 

[(x~ . . . . .  xk, y~ . . . .  , yl) ~ Q O IV.. For every a E F, 

f (x ,  + ax,, x2 . . . . .  xk, y~, . . . ,  yz) E Q N W.. 

By a van der Monde argument the a coefficient of this polynomial will itself be a 

graded identity, and it equals )~f(f). Next let M be a degree 1 elementary matrix, 

and for concreteness take M(xl) = y, Now let 0 ~ a E E~, a 2 = 0, and consider 

g = f ( x l  + aye, x2 . . . .  , xk, y l , . . . ,  y~) 

= / ( x , ,  x ~ , . . . ,  x~, y , , . . . ,  y , ) + , 4 , ( x ,  . . . .  , x~, y ~ , . . . ,  y,). 

This [, vanishes under every graded substitution from A ® E, hence [, ~ O. But, 
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since a commutes with each x~ and anticommutes with each y~, f~ = /Q( f ) ,  and 

the lemma follows. 

We now need to generalize 2.2-2.4 of [2] and describe how to linearize graded 

identities. As in [4] W, is a bimodule for pl(k, l) and FS, with the *-action, and 

we denote by B or B (k, 1; n) the algebra of endomorphisms of IV, generated by 

pl(k, 1). If to E IV, is any monomial in {xl . . . . .  xk, y , , . . . ,  y~}, let 

R+ ={or E $, ] w * ( r  = w}, 

g = { o ' E S ,  [ w * ~ r = - w } ,  

R = R + U R -  and 

s=s(to)= E E  eFS.. 
o- + o'ER 

LEMMA 2. I f  to = Z~ " " • Z ,  E W ,  is a m o n o m i a l  a n d  s(to), B are  a s  a b o v e ,  t h e n  

B t o  = W * s .  

PROOF. Clearly, to * s = I R I" to, hence 

B w  = B t o  * s C W * s. 

For the reverse inclusion, since IV, is completely reducible as a B module we 

decompose W ,  over B as 

W n = ( W  n * S ) ( ~  W ( l ) =  (Bto)(~ W(a)O W (1) 

Let ~r : IV, --* W (~) be the projection map. We need to show that ~r = 0. Since ¢r 

is a B-map,  the double centralizer theorem (4.15 in [4]) implies that there is an 

a E F S ,  such that 7r (v)= v * a for all v E IV.. Write a = Y ~s  a~o-, let T be a 

transversal for R in S, and let J = {i I z~ has degree 1}, so that to * or = fj(o-)too- 

(permutation action) for all (r E S,. Now calculate 

0 ~  T/'(C'D) ~ O ) * a  ~ E O~c~('t)*O" 
aES n 

TET pER 

Since the {to * r} are linearly independent,  

a , , f j ( p )  = 0 for each r E T. 
pER 
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Finally 

7r(v * s) = v *  sa 

mET p E R  

Hence  7r = 0, proving the lemma. 

NOTATION. We make  the usual identification FSo ~ V~ = the space of (degree 

zero)  multilinear, hom oge ne ous  degree n polynomials  in x~ . . . . .  xn. 

COROLLARY 3. Let  ~o E W~ be a monomial  in {x~ . . . . .  xk, yl . . . . .  yt}, a E V~ --- 

FS~ and s = s (co) as above. Then ~o * a is a graded identity ]:or A @ E i]: and only 

i [ s a  is a polynomial  identity [or A.  

PROOF. First, assume that ~o * a @ O, the graded identities for A @ E. 

L e m m a  2 implies that for some b E B ( k , l ; n )  (increasing k if necessary)  

b~o = x~x2""  x, * s, hence, by L e m m a  1, x~ • . .  x, * sa C O. But x~ - • • x~ E Vn 

and, in the identification of V~ with FS~, x ~ " . x n  corresponds  to the identity, 

hence  sa E 0 M V~. 

To prove the reverse inclusion, note  that L e m m a  2 implies that 

B ( x l x 2 . . .  xn) = W (again, increasing k if necessary), hence b ( x , . . ,  x~) = ~o for 

some b ~ B. Now if sa ~ O M %, then as above ( x , . . .  x , ) *  sa E O so 

1 
oo * a = -(-~-i oJ * sa 

1 
= IR  i b ( x ~ . . ,  x~ )*sa  E O. 

We now prove the main result of this section. 

THZOREM 4. For any algebra A and  k, l E N ,  the m a g n u m  U k J ( A )  = 

F(x~ . . . . .  xk, y t , . . . ,  y~) modulo the graded identities for A @ E. 

PROOF. Let  Q = graded identities of A a n d / ,  = Q M V,. Let  a E L, ~o E W, 

a monomia l  and s = s(o)) as above. Then  sa C / ,  since In is a right ideal of  FS~ 

and so o9.  a E Q by L e m m a  3. 

Conversely,  let v ~ W be a graded identity for A @ E. By a van der Monde  

a rgument ,  we may assume that v = o) * a for o) a monomial ,  i.e., we may assume 

that v is homogeneous .  Again  taking s = s(o~), ~o * s = IRl~o and so 
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1 
t o * a  ~--- ? ~ - ]  to * S a .  

Finally, by L e m m a  3, sa E 1. and the re fore  to * a ~ W. * I.. So E @ W. * I .  = 

Q 71 W and the t h e o r e m  follows. 

§2. Magnum 

T h e o r e m  4 descr ibes  the m a g n u m  of A in te rms  of A. In this sect ion we 

construct  f rom the m a g n u m  of A an a lgebra  which satisfies the same identi t ies as 

A. We  need some prel iminaries .  

DEFINrrlON. H(k,  l; n) denotes  the set of par t i t ions  

{/~ = (/~1,  ~k2 . . . .  ) E Par(n)[  h~+~, hk+2 . . . .  _--< 1}. 

The  group  ring FS.  d e c o m p o s e s  into a direct sum of two sided ideals indexed by 

Par (n) ,  

and we b r e a k  this up as 

F S . =  E @ L .  
h EPar(n ) 

W e  will need  

THEOREM 5 ( A m i t s u r - R e g e v  [1]). Let A be any p.i. algebra. Then there exists 

k, 1 E N depending on A,  such that[or all n and all a E D(k,  1; n ), a is an identity 

for A. 

L e m m a  6 is ana logous  to the p roof  of t h e o r e m  14 in [3]. 

LEMMA 6. Let E~s .  a~X~l)" • • x,~,) be an identity for A,  to1 . . . . .  to, monomials 

in F(Xl , . . . , xk ,  y l , . . . , y~)  and J = { i l t o i  has (Z/2Z) degree 1}. Then 

E~s .  a~fj(o')to~o)"'to~.) is a graded identity for A @ E. 

PROOF. Le t  d = degree  (in N) of the p roduc t  to~. • • to., and factor  x l .  • • xa as 

v~ • • • v. so that  deg vi = deg to,, i = 1 . . . . .  n. T h e n  E a~v,o)" • • voc,) is an ident i ty 

for  A and it is easy to see that  

E a~f,(°')to~o)"'to~c,)= (to~"" " to , )*  ~ a,,v,,(l)" • • v~,.)E Wa * Ia(A). 

By T h e o r e m  4 this is a g raded  identi ty for  A Q E. 
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The Z/2Z-grading of W induces a Z/2Z-grading on the magnum Uk'l(A). 
Hence U k'~ (A)  @ E may be regarded either as a Z/2Z × Z/2Z-graded algebra or 

as a Z/2Z-graded algebra. 

THEOREM 7. (cf. [7] prop. 2) Let A be any p.i. algebra and let k, l be as in 

Theorem 5. Then A satisfies the same set of identities as 

(uk'l(A )(~ E)o = (Uk"(A )o(~ Eo)(~(U~'I(A ), (~ E,). 

PROOF. Denote  U = (Uk"(A)@E)o,  I (A)  = the identities of A and I (U) = 
the identities of U. To  prove the theorem it is enough to prove that I(U) n V, = 
I ( A ) O  V, for all n. 

First, let g = E a~x~t~) • • • x~t,) E I(A) .  By linearity of g, we need to prove that 

g vanishes under substitutions of the form x/--> co/@ e / E  U, to/E U k't (A)  is a 

monomial ,  el E E. Fix such a substitution and let 

J = { i  Io, Qe ,  E Uk"(A) ,QE,} .  

Now calculate 

g(tol ~ e 1 . . . . .  Orl ~ En) = 2 0~o-Oo-(1)""" £Oo-(n) ~ Eo-(1)" " " eo-(n) 

= 0  

by L e m m a  6. 

Conversely, let g E I ( U )  n v ,  = / , ( U ) .  Decompose  V, over FS, as V. = 

L ( A ) ~ K ,  and assume by way of contradiction that g E K,. By [3], W, = 

W. * L ( A ) ~ IV. * K,. Moreover ,  by Theorem 5, g E C ( k, l; n) and so by the 

H o o k  Theorem (3.18, [4]) ~o * g #  0 for some monomial  o~ ~ W,. In particular 

co * gf f  W, * L ( A  ). 
On the other hand, for this particular co = zl • • • z. choose el . . . . .  e, E E such 

that e l . - .  e . ~ 0  and each degei  = d e g z l  it the Z/2Z-grading. Then each 

zi @ e / E  U and so g(z~@e~ . . . .  , z ,  @ e . ) = 0 .  Write g a s  E~EsOt~X,~(1)...x~(,). 
If J = {i I deg el = 1}, then, as before,  

( ~ a~f,(~)z~,,. . . z~,)) * e~ . . . e. = O 

and so Z a~fs(cr)z~o~"'z~c,~ = 0 in Uk't(A). But this latter equals o~ * g, giving 

the contradiction w * g E W, * 1, (A).  

REMARK. Uk'~(A) is a finitely generated algebra, and so Theorem 7 relates 

the identities of arbitrary p.i. algebras to identities of finitely generated algebras. 

As one corollary we get the following theorem of Kemer  [5]. 
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COROLLARY 8. If A is any p.i. algebra, then for some m >0,  I(A)D_ 
I(Atm(E)). 

PROOF. By Theorem 7, 

I(a)= I(U)~_ I(U~"(A )® E). 

Uk't(A) is a finitely generated algebra, hence for large m, I(Uk't(A))D__ 
I(AL, (F)) ([6]) and so I(A ) ~_ I(dgm (F) @ E) = 1(alL, (E)). 
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