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ABSTRACT
In an earlier paper Berele and Regev associated to each p.i. algebra A a
sequence of algebras U*(A) which proved useful in studying the identities of
A. We now describe U*'(A) as a universal object and describe how to recover
A from the U“'(A).

Throughout this paper F will be a field of characteristic zero and all algebras
will be algebras over F.

In studying the cocharacters of p.i. algebras in [3] Berele and Regev
introduced a construction U*' which generalized the construction of universal
p.i. algebras. If A is a p.i. algebra and &,/ €N, we remind the reader of the
construction of U*'(A) which we now name the magnums of A. First, let
V =T U be a vector space with dim T = k and dim U = I, The free algebra
F(xi,..., % y1,...,y)is identified in a natural way with the tensor algebra of V,
which is graded as 3@ W,, W= (T @ U)®". As in [4], W, is a module for FS,
under the *-action. FS, is identified with the space of multilinear, homogeneous
polynomials of degree n in x,,...,x, in the usual way, and so defines I,(A) as
the identities of A in FS,. The subspace 3@ W, * I,(A) turns out to be an ideal
in F(xi,..., % y1,..., ) and U*'(A) is, by definition, the quotient algebra.

This construction is somewhat indirect, and in this paper we describe U*'(A)
more directly as a certain universal object of A (Theorem 4). We also describe
(Theorem 7) how to recover the identities of A from its magnum: we cannot
hope to recover A, since the construction of U*' depends only on the identities
of A. As a corollary to Theorem 5, we prove a theorem, also due to Kemer, that
for an arbitrary p.i. algebra A, A satisfies all identities of M. (E), for large m.
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§1. Graded identities

DeriniTIONS.  Let F(X, Y) be the free Z/2Z-graded algebra generated by the
set X U Y, in which elements of X have degree 0 and elements of Y have degree
1. If A=A, A, is any Z/2Z-graded algebra and f(xi,...,x, y1,..., ) €E
F(X, Y), we say that f is a graded identity for A if f vanishes under every degree
zero homomorphism F(X,Y)— A, i.e., if f(ai,...,anbi,...,b)=0 for all
ai,...,a €Aoby,...,b € A, For a fixed A, the set Q of graded identities for
A in F(X,Y) is a graded T-ideal, in the sense that Q is invariant under all
degree zero homomorphisms F(X, Y)— F(X,Y). Note that {f(x,,...,x.)E
0 |x,- € X,i=1,...,n} is precisely the set of (ungraded) polynomial identities
for A,.

ExampLE. Let E be the infinite dimensional Grassman algebra generated by
e, e,,.... E has a Z/2Z-grading, E = E,@ E,, gotten by setting e; € E, for all i.
Then E satisties the graded identities [x;, x;] =[x, y;] = yiy; + yiy: = 0.

For the remainder of this paper A will be an ungraded p.i. algebra; A @ E
will be given the Z/2Z-grading induced from E, (A ® E), = A Q E;,i =0,1; and
we will be concerned with the graded identities for A QE. Let W=
F(xi,..., % ¥1,..., %) be a free Z/2Z-graded algebra as above. W is N-graded
by total degree W = 27, W,. Each graded component W, can be identified
with V®" as in [4], and so pl(k, ) acts on W, as “superderivations.”

LemMa 1. Let Q = the graded identities of A Q E. Then Q N W, is a pl(k, {)
submodule of W,, i.e., if M € pl(k, 1) then M(Q)C Q.

ProOF. By linearity it is enough to show that Q N W, is closed under the
action of each elementary matrix E; in pl(k, ). So, first let M be a degree 0
matrix. For the sake of concreteness, say M is given by M(x,)= x;, and let
f(X, ..., X6 ¥1,-.., W) E Q N W, For every a €F,

fOo+ax, 2,00 X Y1, ..., ) EQ N W

By a van der Monde argument the a coefficient of this polynomial will itself be a
graded identity, and it equals M(f). Next let M be a degree 1 elementary matrix,
and for concreteness take M(x,) = y. Now let 0 # & € E;, o’ =0, and consider

g=fxitay,xs..., % Y1,..., V1)

=f(x1,x2, NS T AR y1)+ le1(x1, ey Xis Yiseo oy y[)
This f, vanishes under every graded substitution from A @ E, hence f, € Q. But,
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since @ commutes with each x; and anticommutes with each y;, f; = M(f), and
the lemma follows.

We now need to generalize 2.2-2.4 of [2] and describe how to linearize graded
identities. As in [4] W, is a bimodule for pl(k, /) and FS, with the *-action, and
we denote by B or B(k, [; n) the algebra of endomorphisms of W, generated by
pl(k, ). If w € W, is any monomial in {xi,..., X, yi,..., ¥}, let

R ={c €S,

w*o=w},

R ={c €S,

w*o=—ow}
R=R"UR~ and

s=s(w)= > o— > oc€FS,

oER" oER

LEMMA 2. Ifw =2z, 2, € W, is a monomial and s(v), B are as above, then
Bw = W s,

Proof. Clearly, o *s =|R |- », hence
By =BoxsC Wkxs,

For the reverse inclusion, since W, is completely reducible as a B module we
decompose W, over B as

W, = (W, x5)D W= (Bo)H WP W®

Let 7 : W, = W be the projection map. We need to show that 7 = (. Since 7
is a B-map, the double centralizer theorem (4.15 in [4]) implies that there is an
a €FS, such that m(v)=v *a for all v € W,. Write a =2,¢5, a0, let T be a
transversal for R in S, and let J = {i Iz,» has degree 1}, so that o * o = fi(0)wo
(permutation action) for all ¢ € S,. Now calculate

O=m(w)=w*xa= Z Qo * T
/%,

= Zapr(w*p)*T

PER

a
m
~

= afr(p)ow * 7.
1€T pER

Since the {w * 7} are linearly independent,

2 a.filp)=0  foreacht € T.

pPER
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Finally

m(v*s)=v+*sa

=Uv* 2 z Qp:SPT

TET pER
=p* E ( E a,,,,(p))s*rIO.
TET \ pER

Hence 7w =0, proving the lemma.

NoraTiON.  We make the usual identification FS, = V, = the space of (degree
zero) multilinear, homogeneous degree n polynomials in x,,..., X.

CoRrOLLARY 3. Letw € W, be a monomialin {x,,..., %, y1,..., i}, a EV, =
FS. and s = s(w) as above. Then w * a is a graded identity for A & E if and only
if sa is a polynomial identity for A.

Proor. First, assume that o *a € Q, the graded identities for A & E.
Lemma 2 implies that for some b € B(k,!l;n) (increasing k if necessary)
bw =x,x,---x, *s, hence, by Lemma 1, x,---x,*sa € Q. But x,---x, €V,
and, in the identification of V, with FS,, x, - x, corresponds to the identity,
hence sa€ QN V,.

To prove the reverse inclusion, note that Lemma 2 implies that
B(xix,- - - x.)= W (again, increasing k if necessary), hence b(x; - x,)= w for
some b € B. Now if sa € Q NV, then as above (x;---x,)*sa € Q so

' -

w*a=| |w*sa

’~>o

P

lb(x,“‘x,‘)*sa e Q.

|

We now prove the main result of this section.

THEOREM 4. For any algebra A and k,1 EN, the magnum U"'(A)=
F(x\,..., X, ¥1,..., Y1) modulo the graded identities for A @ E.

Proor. Let Q = graded identitiesof A and [, =Q NV, Leta €L, w0 €W,
a monomial and s = s(w) as above. Then sa € I, since I, is a right ideal of FS,
and so w *a € Q by Lemma 3.

Conversely, let v € W be a graded identity for A @ E. By a van der Monde
argument, we may assume that v = w * a for ® a monomial, i.e., we may assume
that v is homogeneous. Again taking s = s(w), @ #5s =|R |w and so
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w*a= w * $A.

1
IR|
Finally, by Lemma 3, sa € I, and therefore w xa € W, I,. So 2P W, = I, =
Q N W and the theorem follows.

§2. Magnum

Theorem 4 describes the magnum of A in terms of A. In this section we
construct from the magnum of A an algebra which satisfies the same identities as
A. We need some preliminaries.

DerINITION.  H(k, I; n) denotes the set of partitions
{A = (Al, /\2, .. ) (S Par(n) | /\k+1, /\k+27 - l}
The group ring FS,, decomposes into a direct sum of two sided ideals indexed by

Par(n),

FS.= > @I

A E€Par(n)

and we break this up as

FS, = ( DI IA) o (AEH%M@ L) =oer C(k ;1)@ Dk, 15 ),

We will need

THEOREM 5 (Amitsur-Regev [1]). Let A be any p.i. algebra. Then there exists
k, | EN depending on A, such that for alln and alla € D(k,l; n), a is an identity
for A.

Lemma 6 is analogous to the proof of theorem 14 in [3].

LEMMA 6. Let Z.cs, 0.Xoq)" * * Xam) be an identity for A, v, . .., v, monomials
in F{xi,....%,y1,...,y) and J={i |w,— has (Z/2Z) degree 1}. Then
Toes, Aofi(0)woqy -+ * Wamy is a graded identity for A Q E.

ProofF. Let d = degree (in N) of the product w; - - - w,, and factor x, - - - x, as
v, - - v, so that degv; =degw;, i =1,...,n. Then X a,U,¢y* * * ¥,y 1S an identity
for A and it is easy to see that

Z i (0 )Wy ** Womy = (@1~ W) ¥ Z AoUsty* ** Voin) € Wy % [;(A).
By Theorem 4 this is a graded identity for A & E.
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The Z/2Z-grading of W induces a Z/2Z-grading on the magnum U“'(A).
Hence U*'(A)Q E may be regarded either as a Z/2Z x Z/2Z-graded algebra or
as a Z/2Z-graded algebra.

THEOREM 7. (cf. [7] prop. 2) Let A be any p.i. algebra and let k, | be as in
Theorem 5. Then A satisfies the same set of identities as

(UM (A)® E) = (U (AN ® E) @ (U (A) ® E)).

ProOOF. Denote U =(U*'(A)Q E), I(A) = the identities of A and I(U) =
the identities of U. To prove the theorem it is enough to prove that [(U)N V, =
I(A)N YV, for all n.

First, let g =% a,X,q)* * - Xo(a) € I(A). By linearity of g, we need to prove that
g vanishes under substitutions of the form x, > w, Q& € U, w; € U*'(A) is a
monomial, & € E. Fix such a substitution and let

J={i|o:®e& € U (A)QE}.
Now calculate

g((l)1® E1,...,0W, ® En)= 2 AeWo1)” " * wa(n)® Ea)' " " Eo(n)

= 2 (aofi(0)woy - Do) @ €17+ €n
=0
by Lemma 6.

Conversely, let g € I(U)N V, = I,(U). Decompose V, over FS, as V, =
L(A)® K. and assume by way of contradiction that g € K,. By [3], W, =
W, * L (A)@P W, * K,. Moreover, by Theorem 5, g € C(k,!;n) and so by the
Hook Theorem (3.18, [4]) w * g# 0 for some monomial w € W,. In particular
w*gZ&W,xL(A)

On the other hand, for this particular @ = z, - - - z, choose ¢,,..., &, € E such
that &,--- .70 and each dege =degz it the Z/2Z-grading. Then each
z®& €U andso g(zi QR e1,...,2. ®e.)=0. Write g as Zoes, @oXoqt)” * * Xon)-
If J ={i |dege =1}, then, as before,

( 2 aofi(0)zo0) z,,(,,)) Rei--e.=0

and 50 = a.fi(0)zew " * - Zowy =0 in U*'(A). But this latter equals w * g, giving
the contradiction w *g € W, * I,(A).

REMARK. -U*'(A} is a finitely generated algebra, and so Theorem 7 relates
the identities of arbitrary p.i. algebras to identities of finitely generated algebras.
As one corollary we get the following theorem of Kemer [5].
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CoroLLARY 8. If A is any p.i. algebra, then for some m >0, I(A)D
I(M.(E)).

Proor. By Theorem 7,
I(A)=I(U)2 I(U*(A)Q E).

U*'(A) is a finitely generated algebra, hence for large m, I(U*'(A))2D
I(Mn(F)) ([6]) and so I(A)2 I(Mn(F)R E) = I(M(E)).
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